Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Inform ; 143: 104407, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271308

RESUMO

OBJECTIVE: To determine whether graph neural network based models of electronic health records can predict specialty consultation care needs for endocrinology and hematology more accurately than the standard of care checklists and other conventional medical recommendation algorithms in the literature. METHODS: Demand for medical expertise far outstrips supply, with tens of millions in the US alone with deficient access to specialty care. Rather than potentially months long delays to initiate diagnostic workup and medical treatment with a specialist, referring primary care supported by an automated recommender algorithm could anticipate and directly initiate patient evaluation that would otherwise be needed at subsequent a specialist appointment. We propose a novel graph representation learning approach with a heterogeneous graph neural network to model structured electronic health records and formulate recommendation/prediction of subsequent specialist orders as a link prediction problem. RESULTS: Models are trained and assessed in two specialty care sites: endocrinology and hematology. Our experimental results show that our model achieves an 8% improvement in ROC-AUC for endocrinology (ROC-AUC = 0.88) and 5% improvement for hematology (ROC-AUC = 0.84) personalized procedure recommendations over prior medical recommender systems. These recommender algorithm approaches provide medical procedure recommendations for endocrinology referrals more effectively than manual clinical checklists (recommender: precision = 0.60, recall = 0.27, F1-score = 0.37) vs. (checklist: precision = 0.16, recall = 0.28, F1-score = 0.20), and similarly for hematology referrals (recommender: precision = 0.44, recall = 0.38, F1-score = 0.41) vs. (checklist: precision = 0.27, recall = 0.71, F1-score = 0.39). CONCLUSION: Embedding graph neural network models into clinical care can improve digital specialty consultation systems and expand the access to medical experience of prior similar cases.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Registros Eletrônicos de Saúde , Encaminhamento e Consulta , Endocrinologia , Hematologia
2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990458

RESUMO

Nature underpins human well-being in critical ways, especially in health. Nature provides pollination of nutritious crops, purification of drinking water, protection from floods, and climate security, among other well-studied health benefits. A crucial, yet challenging, research frontier is clarifying how nature promotes physical activity for its many mental and physical health benefits, particularly in densely populated cities with scarce and dwindling access to nature. Here we frame this frontier by conceptually developing a spatial decision-support tool that shows where, how, and for whom urban nature promotes physical activity, to inform urban greening efforts and broader health assessments. We synthesize what is known, present a model framework, and detail the model steps and data needs that can yield generalizable spatial models and an effective tool for assessing the urban nature-physical activity relationship. Current knowledge supports an initial model that can distinguish broad trends and enrich urban planning, spatial policy, and public health decisions. New, iterative research and application will reveal the importance of different types of urban nature, the different subpopulations who will benefit from it, and nature's potential contribution to creating more equitable, green, livable cities with active inhabitants.


Assuntos
Planejamento de Cidades , Ecossistema , Exercício Físico , Modelos Teóricos , Saúde Pública , Humanos
3.
NPJ Digit Med ; 2: 45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304391

RESUMO

Smartphone apps and wearable devices for tracking physical activity and other health behaviors have become popular in recent years and provide a largely untapped source of data about health behaviors in the free-living environment. The data are large in scale, collected at low cost in the "wild", and often recorded in an automatic fashion, providing a powerful complement to traditional surveillance studies and controlled trials. These data are helping to reveal, for example, new insights about environmental and social influences on physical activity. The observational nature of the datasets and collection via commercial devices and apps pose challenges, however, including the potential for measurement, population, and/or selection bias, as well as missing data. In this article, we review insights gleaned from these datasets and propose best practices for addressing the limitations of large-scale data from apps and wearables. Our goal is to enable researchers to effectively harness the data from smartphone apps and wearable devices to better understand what drives physical activity and other health behaviors.

4.
Proc Natl Acad Sci U S A ; 116(10): 4426-4433, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765515

RESUMO

Phenotype robustness to environmental fluctuations is a common biological phenomenon. Although most phenotypes involve multiple proteins that interact with each other, the basic principles of how such interactome networks respond to environmental unpredictability and change during evolution are largely unknown. Here we study interactomes of 1,840 species across the tree of life involving a total of 8,762,166 protein-protein interactions. Our study focuses on the resilience of interactomes to network failures and finds that interactomes become more resilient during evolution, meaning that interactomes become more robust to network failures over time. In bacteria, we find that a more resilient interactome is in turn associated with the greater ability of the organism to survive in a more complex, variable, and competitive environment. We find that at the protein family level proteins exhibit a coordinated rewiring of interactions over time and that a resilient interactome arises through gradual change of the network topology. Our findings have implications for understanding molecular network structure in the context of both evolution and environment.


Assuntos
Evolução Biológica , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Especificidade da Espécie
5.
Nat Commun ; 9(1): 2544, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959323

RESUMO

Uncovering modular structure in networks is fundamental for systems in biology, physics, and engineering. Community detection identifies candidate modules as hypotheses, which then need to be validated through experiments, such as mutagenesis in a biological laboratory. Only a few communities can typically be validated, and it is thus important to prioritize which communities to select for downstream experimentation. Here we develop CRANK, a mathematically principled approach for prioritizing network communities. CRANK efficiently evaluates robustness and magnitude of structural features of each community and then combines these features into the community prioritization. CRANK can be used with any community detection method. It needs only information provided by the network structure and does not require any additional metadata or labels. However, when available, CRANK can incorporate domain-specific information to further boost performance. Experiments on many large networks show that CRANK effectively prioritizes communities, yielding a nearly 50-fold improvement in community prioritization.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Mapas de Interação de Proteínas , Animais , Redes Comunitárias/estatística & dados numéricos , Humanos , Serviços de Informação/estatística & dados numéricos
6.
JMIR Public Health Surveill ; 4(1): e4, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317382

RESUMO

BACKGROUND: Influenza outbreaks pose major challenges to public health around the world, leading to thousands of deaths a year in the United States alone. Accurate systems that track influenza activity at the city level are necessary to provide actionable information that can be used for clinical, hospital, and community outbreak preparation. OBJECTIVE: Although Internet-based real-time data sources such as Google searches and tweets have been successfully used to produce influenza activity estimates ahead of traditional health care-based systems at national and state levels, influenza tracking and forecasting at finer spatial resolutions, such as the city level, remain an open question. Our study aimed to present a precise, near real-time methodology capable of producing influenza estimates ahead of those collected and published by the Boston Public Health Commission (BPHC) for the Boston metropolitan area. This approach has great potential to be extended to other cities with access to similar data sources. METHODS: We first tested the ability of Google searches, Twitter posts, electronic health records, and a crowd-sourced influenza reporting system to detect influenza activity in the Boston metropolis separately. We then adapted a multivariate dynamic regression method named ARGO (autoregression with general online information), designed for tracking influenza at the national level, and showed that it effectively uses the above data sources to monitor and forecast influenza at the city level 1 week ahead of the current date. Finally, we presented an ensemble-based approach capable of combining information from models based on multiple data sources to more robustly nowcast as well as forecast influenza activity in the Boston metropolitan area. The performances of our models were evaluated in an out-of-sample fashion over 4 influenza seasons within 2012-2016, as well as a holdout validation period from 2016 to 2017. RESULTS: Our ensemble-based methods incorporating information from diverse models based on multiple data sources, including ARGO, produced the most robust and accurate results. The observed Pearson correlations between our out-of-sample flu activity estimates and those historically reported by the BPHC were 0.98 in nowcasting influenza and 0.94 in forecasting influenza 1 week ahead of the current date. CONCLUSIONS: We show that information from Internet-based data sources, when combined using an informed, robust methodology, can be effectively used as early indicators of influenza activity at fine geographic resolutions.

7.
Nature ; 547(7663): 336-339, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28693034

RESUMO

To be able to curb the global pandemic of physical inactivity and the associated 5.3 million deaths per year, we need to understand the basic principles that govern physical activity. However, there is a lack of large-scale measurements of physical activity patterns across free-living populations worldwide. Here we leverage the wide usage of smartphones with built-in accelerometry to measure physical activity at the global scale. We study a dataset consisting of 68 million days of physical activity for 717,527 people, giving us a window into activity in 111 countries across the globe. We find inequality in how activity is distributed within countries and that this inequality is a better predictor of obesity prevalence in the population than average activity volume. Reduced activity in females contributes to a large portion of the observed activity inequality. Aspects of the built environment, such as the walkability of a city, are associated with a smaller gender gap in activity and lower activity inequality. In more walkable cities, activity is greater throughout the day and throughout the week, across age, gender, and body mass index (BMI) groups, with the greatest increases in activity found for females. Our findings have implications for global public health policy and urban planning and highlight the role of activity inequality and the built environment in improving physical activity and health.


Assuntos
Exercício Físico , Internacionalidade , Saúde Pública/estatística & dados numéricos , Acelerometria , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Criança , Cidades , Planejamento de Cidades , Conjuntos de Dados como Assunto , Planejamento Ambiental , Feminino , Política de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Prevalência , Fatores Sexuais , Smartphone , Caminhada , Adulto Jovem
8.
J Mach Learn Res ; 18(1): 110-114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29599649

RESUMO

SnapVX is a high-performance solver for convex optimization problems defined on networks. For problems of this form, SnapVX provides a fast and scalable solution with guaranteed global convergence. It combines the capabilities of two open source software packages: Snap.py and CVXPY. Snap.py is a large scale graph processing library, and CVXPY provides a general modeling framework for small-scale subproblems. SnapVX offers a customizable yet easy-to-use Python interface with "out-of-the-box" functionality. Based on the Alternating Direction Method of Multipliers (ADMM), it is able to efficiently store, analyze, parallelize, and solve large optimization problems from a variety of different applications. Documentation, examples, and more can be found on the SnapVX website at http://snap.stanford.edu/snapvx.

9.
Artigo em Inglês | MEDLINE | ID: mdl-28344853

RESUMO

Large networks are becoming a widely used abstraction for studying complex systems in a broad set of disciplines, ranging from social network analysis to molecular biology and neuroscience. Despite an increasing need to analyze and manipulate large networks, only a limited number of tools are available for this task. Here, we describe Stanford Network Analysis Platform (SNAP), a general-purpose, high-performance system that provides easy to use, high-level operations for analysis and manipulation of large networks. We present SNAP functionality, describe its implementational details, and give performance benchmarks. SNAP has been developed for single big-memory machines and it balances the trade-off between maximum performance, compact in-memory graph representation, and the ability to handle dynamic graphs where nodes and edges are being added or removed over time. SNAP can process massive networks with hundreds of millions of nodes and billions of edges. SNAP offers over 140 different graph algorithms that can efficiently manipulate large graphs, calculate structural properties, generate regular and random graphs, and handle attributes and meta-data on nodes and edges. Besides being able to handle large graphs, an additional strength of SNAP is that networks and their attributes are fully dynamic, they can be modified during the computation at low cost. SNAP is provided as an open source library in C++ as well as a module in Python. We also describe the Stanford Large Network Dataset, a set of social and information real-world networks and datasets, which we make publicly available. The collection is a complementary resource to our SNAP software and is widely used for development and benchmarking of graph analytics algorithms.

10.
Proc ACM SIGMOD Int Conf Manag Data ; 2015: 1105-1110, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27081215

RESUMO

We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...